fbpx

POWER ANALYZER PW6001

DC, 0.1 Hz to 2 MHz, 3-phase 4-wire, High Precision Power Analyzer for Motor and Inverter Efficiency Analysis

Shop Now

CONTACT US
SKU: PW6001 Category:

Description

Hioki benchtop power meters and power analyzers are best in class power measuring instruments for measuring single to three-phase lines with a high degree of precision and accuracy. The PW6001 is Hioki’s flagship power analyzer, featuring high accuracy, wide band, and high stability for measuring electrical power from DC to inverter frequencies, providing maximum of 12 channels* to support single- and three-phase inverter motor system measurements and next generation devices such as silicon-carbide (SiC) inverters.
*When synchronizing two 6-channel models connected via optical link

Key Features

• Exclusive current sensor phase shift function lets you maintain accuracy even in high frequency, low power factor applications
• Basic accuracy of ±0.02%*1 for power measurement
*1 PW6001 accuracy only. Instrument delivers accuracy of ±0.07% even after the current sensor accuracy has been added.
• High noise resistance and stability (80 dB/100 kHz CMRR, ±0.01%/°C temperature characteristics)
• Accurate measurement even when the load is characterized by large fluctuations; TrueHD 18-bit resolution
• 10 ms data refresh while maintaining maximum accuracy (using a specially designed IC to make all measurements independently while performing simultaneous calculations.)
• DC accuracy of ±0.07%, which is key for stable, accurate efficiency measurement
• Wide frequency bandwidth of DC, or 0.1 Hz to 2 MHz
• Achieve true frequency analysis with high-speed 5MS/s sampling (18 bit)
• Synchronize 2 units for up to 12 channels*2 in real time
*2 Two 6-channel models can be connected with an optical connection cable
• Special triggers to enable waveform analysis and motor analysis without the need for an oscilloscope
• Wideband harmonic analysis up to the 100th order with a 1.5 MHz band
• Send measured values to HIOKI data loggers using a Bluetooth® wireless technology compatible adapter (LR8410 Link-compatible products), Ver. 2.0 and later

Model No. (Order Code)

PW6001-011ch
PW6001-111ch, motor analysis, D/A output
PW6001-022ch
PW6001-122ch, motor analysis, D/A output
PW6001-033ch
PW6001-133ch, motor analysis, D/A output
PW6001-044ch
PW6001-144ch, motor analysis, D/A output
PW6001-055ch
PW6001-155ch, motor analysis, D/A output
PW6001-066ch
PW6001-166ch, motor analysis, D/A output

Note: Optional voltage cords and current sensor are required for taking measurements. *Specify the number of built-in channels and inclusion of Motor analysis & D/A output upon order for factory installation. These options cannot be changed or added at a later date

LAN
USB 2.0
CE
GPIB
TrueRMS
RS232C
sdhc

 

Product Video

Current Sensor Phase Shift

Current sensor phase shift is essential especially in high current situations in order to achieve optimal measurement precision. Current sensors typically exhibit gradually increasing phase error in the high-frequency region due to the characteristics of the sensor’s magnetic core and circuitry. Furthermore, differences in the design of various sensor models cause the magnitude of this error to vary. The PW6001’s current sensor phase shift function uses sensor-specific phase error information to correct for error, thereby improving phase characteristics in the high-frequency region and reducing power measurement error. Phase shift correction is conducted with a 0.01° resolution in order to measure power even more accurately.

0.1 Hz to 2 MHz frequency bandwidth

Power measurements across wide bandwidths are required for supporting high-speed switching devices such as SiC. Compared even to the Hioki 3390 Power Analyzer, the PW6001 is engineered with 10x the frequency band and sampling performance. High accuracy, wideband, and high stability. The Hioki PW6001 combines the 3 important elements of power measurement and basic performance backed by advanced technology to achieve unsurpassed power analysis.

High-speed sampling of 5 MS/s for true frequency analysis

Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz. This enables analysis without aliasing error

Fast, simultaneous calculation functions achieved with Power Analysis Engine II

All measurements, including period detection, wideband power analysis, harmonic analysis, and waveform analysis, are digitally processed independently and with no effect on each other. Fast calculation processing is used to achieve a data update speed of 10 ms while maintaining maximum accuracy.

Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability

The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of 80 dB/100 kHz. Add the superior temperature characteristics of ±0.01%/°C and you now have access to a power analyzer that delivers top-of-the-line measurement stability.

Analyze waveforms without an oscilloscope

In addition to voltage and current waveforms, torque sensor and encoder signals can also be displayed simultaneously. The PW6001 is also built in with triggers, pre-triggers, other triggers convenient for motor analysis such as for PWM waveforms, as well as encoder pulse triggers.

Harmonic analysis up to 1.5 MHz

Wideband harmonic analysis is provided as a standard feature to a max. 100th order for fundamental frequencies 0.1 Hz to 300 kHz and an analysis band of 1.5 MHz. Analysis of fundamental waves in motors and measurement of distortion rate in the transmission waveforms for wireless power supplies are now possible.

FFT analysis of target waveforms

Frequency analysis up to 2 MHz. Specify any waveform analysis range you like and see the 10 highest peak values and frequencies displayed.

Digital LPF for displaying the waveform you want to view<