DC, 0.1 Hz to 2 MHz, 3-phase 4-wire, High Precision Power Analyzer for Motor and Inverter Efficiency Analysis



Hioki benchtop power meters and power analyzers are best in class power measuring instruments for measuring single to three-phase lines with a high degree of precision and accuracy. The PW6001 is Hioki’s flagship power analyzer, featuring high accuracy, wide band, and high stability for measuring electrical power from DC to inverter frequencies, providing maximum of 12 channels* to support single- and three-phase inverter motor system measurements and next generation devices such as silicon-carbide (SiC) inverters.
*When synchronizing two 6-channel models connected via optical link

Key Features
• Exclusive current sensor phase shift function lets you maintain accuracy even in high frequency, low power factor applications
• Basic accuracy of ±0.02%*1 for power measurement
*1 PW6001 accuracy only. Instrument delivers accuracy of ±0.07% even after the current sensor accuracy has been added.
• High noise resistance and stability (80 dB/100 kHz CMRR, ±0.01%/°C temperature characteristics)
• Accurate measurement even when the load is characterized by large fluctuations; TrueHD 18-bit resolution
• 10 ms data refresh while maintaining maximum accuracy (using a specially designed IC to make all measurements independently while performing simultaneous calculations.)
• DC accuracy of ±0.07%, which is key for stable, accurate efficiency measurement
• Wide frequency bandwidth of DC, or 0.1 Hz to 2 MHz
• Achieve true frequency analysis with high-speed 5MS/s sampling (18 bit)
• Synchronize 2 units for up to 12 channels*2 in real time
*2 Two 6-channel models can be connected with an optical connection cable
• Special triggers to enable waveform analysis and motor analysis without the need for an oscilloscope
• Wideband harmonic analysis up to the 100th order with a 1.5 MHz band
• Send measured values to HIOKI data loggers using a Bluetooth® wireless technology compatible adapter (LR8410 Link-compatible products), Ver. 2.0 and later

Model No. (Order Code)

PW6001-01 1ch
PW6001-11 1ch, motor analysis, D/A output
PW6001-02 2ch
PW6001-12 2ch, motor analysis, D/A output
PW6001-03 3ch
PW6001-13 3ch, motor analysis, D/A output
PW6001-04 4ch
PW6001-14 4ch, motor analysis, D/A output
PW6001-05 5ch
PW6001-15 5ch, motor analysis, D/A output
PW6001-06 6ch
PW6001-16 6ch, motor analysis, D/A output

Note: Optional voltage cords and current sensor are required for taking measurements. *Specify the number of built-in channels and inclusion of Motor analysis & D/A output upon order for factory installation. These options cannot be changed or added at a later date

USB 2.0


Product Video

Current Sensor Phase Shift

Current sensor phase shift is essential especially in high current situations in order to achieve optimal measurement precision. Current sensors typically exhibit gradually increasing phase error in the high-frequency region due to the characteristics of the sensor’s magnetic core and circuitry. Furthermore, differences in the design of various sensor models cause the magnitude of this error to vary. The PW6001’s current sensor phase shift function uses sensor-specific phase error information to correct for error, thereby improving phase characteristics in the high-frequency region and reducing power measurement error. Phase shift correction is conducted with a 0.01° resolution in order to measure power even more accurately.

0.1 Hz to 2 MHz frequency bandwidth

Power measurements across wide bandwidths are required for supporting high-speed switching devices such as SiC. Compared even to the Hioki 3390 Power Analyzer, the PW6001 is engineered with 10x the frequency band and sampling performance. High accuracy, wideband, and high stability. The Hioki PW6001 combines the 3 important elements of power measurement and basic performance backed by advanced technology to achieve unsurpassed power analysis.

High-speed sampling of 5 MS/s for true frequency analysis

Measurements based on sampling theorem are required to perform an accurate power analysis of PWM waveforms. The Hioki PW6001 features direct sampling of input signals at 5 MS/s, resulting in a measurement band of 2 MHz. This enables analysis without aliasing error

Fast, simultaneous calculation functions achieved with Power Analysis Engine II

All measurements, including period detection, wideband power analysis, harmonic analysis, and waveform analysis, are digitally processed independently and with no effect on each other. Fast calculation processing is used to achieve a data update speed of 10 ms while maintaining maximum accuracy.

Strengthened resistance to noise and temperature fluctuations in the absolute pursuit of measurement stability

The custom-shaped solid shield made completely of finely finished metal and optical isolation devices used to maintain sufficient creepage distance from the input terminals dramatically improve noise resistance, provide optimal stability, and achieve a CMRR performance of 80 dB/100 kHz. Add the superior temperature characteristics of ±0.01%/°C and you now have access to a power analyzer that delivers top-of-the-line measurement stability.

Analyze waveforms without an oscilloscope

In addition to voltage and current waveforms, torque sensor and encoder signals can also be displayed simultaneously. The PW6001 is also built in with triggers, pre-triggers, other triggers convenient for motor analysis such as for PWM waveforms, as well as encoder pulse triggers.

Harmonic analysis up to 1.5 MHz

Wideband harmonic analysis is provided as a standard feature to a max. 100th order for fundamental frequencies 0.1 Hz to 300 kHz and an analysis band of 1.5 MHz. Analysis of fundamental waves in motors and measurement of distortion rate in the transmission waveforms for wireless power supplies are now possible.

FFT analysis of target waveforms

Frequency analysis up to 2 MHz. Specify any waveform analysis range you like and see the 10 highest peak values and frequencies displayed.

Digital LPF for displaying the waveform you want to view

Select a cutoff frequency for the measurement target. Digital LPF greatly reduces noise to let you display the waveform you want to view.

Seamless operability

Time spent on operations is reduced, to allow focused concentration on analysis. -9-inch touch screen with soft keypad -Dual knobs for vertical/horizontal manipulation of waveforms -Wiring confirmation function, to avoid wiring mistakes -Enter handwritten memos on the screen, or use the onscreen keypad

One-touch settings take you to measurement immediately

The built-in easy setup function allows you to simply select the type of measurement line and immediately start measurement using the automated optimum settings.

DC accuracy is indispensable for achieving correct efficiency measurements

For example, when measuring the efficiency of a DC/AC converter, not only AC accuracy but also DC accuracy are equally important. With the PW6001, a DC measurement accuracy of ±0.02% rdg. ±0.05% f.s.* delivers correct and stable efficiency measurements. *Unit accuracy only

Specially designed for current sensors to achieve highly precise measurement

This reduces the effects of wiring and meter loss, allowing measurements with wiring conditions that are close to the actual operating environment for a highly efficient system. - Short wiring - Little effect from routing - Small insertion loss

High-accuracy clamp current sensor

The CT684x series feature broad temperature characteristics and an operating temperature range of -40°C to 85°C, allowing them to be used in operational evaluations of devices and inside equipment that are subject to extreme temperature changes. The current sensors’ tough performance helps ensure you can make the measurements you need.

Get a combined accuracy of ±0.075% rdg. with CURRENT BOX PW9100

Add ±0.05% rdg. accuracy of the current sensor to the PW6001’s basic accuracy of ±0.025% rdg. to achieve accuracy of ±0.075%. Choose from a diverse array of sensors to cover very small currents from 10mA up to large 2000A* loads. *Effective measurement range.

Wideband current probes supported

When combined with the HIOKI wideband current probes, it is also possible to measure minute currents of 0.5 mA. This is perfect for observing leakage current waveforms in inverters. ・CT6700CT6701 1mA〜 ・CT6710CT6711 0.5mA〜

CT6904, The optimal device for testing large current inverters

Newly developed opposed split coil technology is used in winding (CT) areas, achieving a wide measurement range from DC to 4MHz. The CT6904 makes it a world-class current sensor that provides the ultimate level of performance when used in conjunction with the Power Analyzer PW6001. (The sensor is also available in an 800A rated version.)


PC Communication Software – PW Communicator

PW Communicator is an dedicated application software for communicating between a PW6001 power meter and a PC. Free download is available from the Hioki website. The application contains convenient functions for setting the PW6001, monitoring the measurement values, acquiring data via communication, computing efficiency, and much more.

Remote control via LAN

Control the PW6001 remotely from a tablet, smartphone, or any device offering a standard web browser.

Diverse motor analysis functions

Enter signals from torque meters and speed meters to measure motor power. In addition to motor parameters such as motor power and electrical angle, output signals from insolation meters and wind speed meters can also be measured.

SiC measurement achieved with high resolution

High resolution is required for the high precision measurement of PWM waveforms for SiC semiconductors with low ON resistance. TrueHD 18-bit is achieved at a level of precision that has never been seen before.

Advanced electrical angle measurement function

The PW6001 features a built-in electric angle measurement function required for the measurement of motor parameters in high-efficiency synchronized motors and the analysis of vector control via dq coordinate systems. Make real-time measurements of phases for voltage and current fundamental wave components based on encoder pulses. Further, zero-adjustment of the phase angle when induced voltage occurs allows phase measurement at the induction voltage standard. Finally, the PW6001 can detect the forward/reverse from A phase and B phase pulses to enable 4-quadrant analysis of torque and RPM.

Display any calculation result in real-time

Set equations to have PW6001 compute measurement values in the way you want. You can enter up to 16 calculation formulas, and functions like sin and log are supported. Calculation results can be used as parameters for other calculation formulas, enabling complex analysis. -Calculate Ld and Lq in motor vector control -Measure ferrite core loss -Add up RMS and power -Calculate multisystem efficiency and loss with solar power modules and similar equipment

Power conditioner testing

Parameters required for power conditioners, such as fundamental wave reactive power Qf nd, DC ripple rate, and 3-phase unbalanced rate, can be measured and displayed simultaneously. The required measurement data can be viewed at a glance, improving test efficiency.

Build a 12-channel power meter using “numerical synchronization”

For multi-point measurements, use the numerical synchronization function to transfer power parameters from the slave device to aggregate at the master in real-time, essentially enabling you to build a 12-channel power analysis system

Simply transfer waveforms with “waveform synchronization”

Achieve real-time* transfer of 5 MS/s 18-bit sampling data. Measurement waveforms on the slave instrument are displayed without modification on the master unit, paving the way for new applications for power analyzers, such as measurement of the voltage phase difference between two separate devices. * For both master instruments and slave instrument, waveform synchronization operates only when there are 3 or more channels. Max. ±5 sampling error

Basic specifications(Accuracy guaranteed for 6 months, Post-adjustment accuracy guaranteed for 6 months)

Measurement line type Single-phase 2-wire, single-phase 3-wire, three-phase 3-wire, three-phase 4-wire
Number of input channels Max. 6 channels; each input unit provides 1 channel for simultaneous voltage and current input
(Voltage measurement unit: Photoisolated input, resistance voltage divider, Current measurement unit: Isolated input from current sensor)
Measurement items Voltage (U), current (I), active power (P), apparent power (S), reactive power (Q), power factor (λ), phase angle (φ), frequency (f), efficiency (η), loss (Loss), voltage ripple factor (Urf), current ripple factor (Irf), current integration (Ih), power integration (WP), voltage peak (Upk), current peak (Ipk)
  Harmonic measurement: Harmonic active power, select calculation order
from 2nd order to 100th order
  Waveform recording: Voltage and current waveforms/ Motor pulse: Always 5 MS/s 
Motor waveforms: Always 50 kS/s, 16 bits
Recording capacity: 1 Mword × ((voltage + current) × number of channels + motor
  Motor analysis (PW6001-11 to -16 only): Voltage, Torque, Rotation, Frequency, Slip, or Motor output
Measurement range Voltage range: 6 to 1500 V, 8 ranges
Current range (Probe 1) : 400 mA to 1 kA (depends on current sensor)
Current range (Probe 2) : 100 mA to 50 kA (depends on current sensor)
Power range: 2.40000W to 4.50000MW (depends on combination of voltage and current range)
Frequency range: 0.1 Hz to 2 MHz
Basic accuracy Voltage: ±0.02 % rdg. ±0.02 % f.s.
Current: ±0.02 % rdg. ±0.02 % f.s. + current sensor accuracy
Active power: ±0.02 % rdg. ±0.03 % f.s. + current sensor accuracy
Synchronization frequency range Power measurement: 0.1 Hz to 2 MHz
Harmonic measurement: 45 Hz to 66 Hz (IEC standard mode), 0.1 Hz to 300 kHz (Wideband mode)
Frequency band DC, 0.1 Hz to 2 MHz
Data update rate Power measurement: 10 ms/ 50 ms/ 200 ms
Harmonic measurement: 200 ms (IEC standard mode), 50 ms (Wideband mode
Data save interval OFF, 10 msec to 500 msec, 1 sec to 30 sec, 1 minute to 60 minutes
User-selected from all measured values, including harmonic measured values,
Specified measured values can be saved in internal memory or USB flash drive
External interfaces USB (memory), LAN, GP-IB, RS-232C (for communication/LR8410 link), External control ,Synchronization control
Logger connectivity Sends measured values wirelessly to logger by using a Bluetooth® wireless technology serial conversion adapter. (Supported devices: Hioki LR8410 Link-compatible loggers), Ver. 2.0 and later
Power supply 100 to 240 V AC, 50/60 Hz, 200 VA max
Dimensions and mass 430 mm (16.93 in)W × 177 mm (6.97 in)H × 450 mm (17.72 in)D, 14 kg (49.4 oz) (PW6001-16)
Accessories Instruction Manual ×1, Power cord ×1, D-sub connector × 1 (PW6001-1x only)




Flyer Catalog: LR8410 Link

Technical Notes

Power Analyzer PW6001

High-precision, Wideband, High Stable Current Sensing Technology

Identification of PMSM Parameters with the Power Analyzer PW6001 (Theory and Instrument Configuration)

Current Measurement Methods that Deliver High Precision Power Analysis in the Field of Power Electronics

High-precision Power Measurement of SiC Inverters

Identification of PMSM Motor Parameters with a Power Analyzer (Measurement Examples)

Measurement of Loss in High-Frequency Reactors

Effectiveness of Current Sensor Phase Shift When Evaluating the Efficiency of High-efficiency Motor Drives

Declaration of Conformity

POWER ANALYZER PW6001-01,PW6001-02,PW6001-03,PW6001-04,PW6001-05,PW6001-06,PW6001-11,PW6001-12,PW6001-13,PW6001-14,PW6001-15,PW6001-16 [101KB]

Drivers, Firmware

MATLAB Toolkit for PW6001

LabVIEW driver for the PW6001 Power ANALYZER

PW Communicator - Application

PW COMMUNICATOR - Instruction Manual

PW COMMUNICATOR - USB488h driver(64-bit)

PW COMMUNICATOR - USB488h driver(32-bit)


10 mA class to 500 A (High speed)



• DC to 10MHz (-3dB) • 150Arms maximum input • 0.01V/A output • φ 20 mm (0.79 in) core dia.


• DC to 2MHz (-3dB) • 500Arms maximum input • 0.01V/A output • φ 20 mm (0.79 in) core dia.

Connection Options

* L9217: for motor analysis input



50/125 μm wavelength multimode fiber, 10 m (32.81 ft) length


RS-232C CABLE 9637


Cord has insulated BNC connectors at both ends, 1.6 m (5.25 ft) length


9 pin - 9 pin straight, 1.5 m (4.92 ft) length

Direct Current Input

* To connect to the HIOKI ME15W (12 pin) terminal



• ±0.04% power accuracy in combination with PW6001 • Direct input • Test power conversion efficiency of motors, inverters, HEV, and renewable energy equipment

High precision current measurement

Up to 200 A (High precision) *ME15W (12-pin) terminal type * Direct connection with U8977



• DC to 500kHz (Phase: up to 300kHz) • Rated 200A AC/DC • φ 20 mm (0.79 in) core dia.


• DC to 1MHz (Phase: up to 300kHz) • Rated 50A AC/DC • φ 24 mm (0.94 in) core dia.


• DC to 500kHz (Phase: up to 300kHz) • Rated 200A AC/DC • φ 24 mm (0.94 in) core dia.


• DC to 1MHz (Phase: up to 300kHz) • Rated 20A AC/DC • φ 20 mm (0.79 in) core dia.


• 1Hz to 100kHz (Phase: 5Hz to 50kHz) • Rated 20A/200A AC/DC • φ 46 mm (1.81 in) core dia.

Options for Differential Probes

Can also be used with accessories such as L4936/L4937/L4931 as available for other testers.



Attaches to the tip of the banana plug cable, Red/ Black: 1 each, 196 mm (7.72 in) length, CAT III 1000 V

Other options for Input



Cord has insulated BNC connectors at both ends, 1.6 m (5.25 ft) length

PC communication

*The 9151-02 is only for the RM3545-01


RS-232C CABLE 9637

PC peripherals

*LOGGER UTILITY is a bundled software, Real-time data collection will be supported by version upgrade



• Software automatically recognizes LAN-connected measuring instrument • Display acquired data as graphs in real-time • Windows compatible

PC peripherals



• Software automatically recognizes LAN-connected measuring instrument • Display acquired data as graphs in real-time • Windows compatible

PL23 (10 pin) - ME15W (12 pin) conversion

*When using a 10-pin sensor without “-05” in the model number, Conversion Cable CT9900 must be used to connect to 12-pin terminal.



Convert PL23 (10-pin) terminal to ME15W (12-pin) terminal

POWER SUPPLY for Current Sensors

*A separate power supply (CT955x) is required in order to use a high-precision current sensor.



• Power supply for current sensors when used alone • 4ch, with Waveform/Total Waveform/Total RMS output

Up to 1000 A (High precision)

*A separate power supply (CT955x) is required in order to use a high-precision current sensor. *Only sensors with ME15W (12-pin) terminals (-05 type) can be connected to the CT955x. *The separately available CONVERSION CABLE CT9900 is required in order to use a sensor with a PL23 (10-pin) terminal.



• DC to 20 kHz • 1000 A AC/DC rated • 2 mV/A output • φ 50 mm (1.79 in) core dia.


• DC to 100kHz • Phase: DC to 100kHz • Rated 500A • 2V/500A output • φ 36 mm (1.42 in) core dia.


• DC to 100 kHz • 500 A AC/DC rated • 4 mV/A output • φ 50 mm (1.79 in) core dia.


• DC to 200 kHz • 500 A AC/DC rated • 4 mV/A output • φ 20 mm (0.79 in) core dia.


• DC to 20kHz • Phase: DC to 1kHz • Rated 1000A • 2V/1000A output • φ 36 mm (1.42 in) core dia.

Up to 200 A (High precision)

* To connect to the Probe1 input terminal (HIOKI ME15W terminal)



• DC to 1MHz, Phase: DC to 300kHz • Rated 50A • 2V/50 A output • φ 24 mm (0.94 in) core dia.


• DC to 500 kHz, Phase: DC to 300kHz • Rated 200A • 2V/200A output • φ 24 mm (0.94 in) core dia.


• Frequency characteristics DC to 1 MHz, 20A AC/DC rated, 0.1 V/A output • φ 20 mm (0.79 in) core dia.


• Frequency characteristics DC to 500 kHz, 200A AC/DC rated, 0.01 V/A output • φ 20 mm (0.79 in) core dia.

Up to 30 A (High speed)

* To connect Probe 2



• DC to 50MHz (−3dB) • 30 Arms maximum • φ 5 mm (0.20 in) Core dia.


• DC to 100 MHz (−3dB) • 30 Arms maximum • φ 5 mm (0.20 in) Core dia.

Up to 4000 A (High precision)

Aggregate and measure large currents in multi-cable circuits Use multiple AC/DC Current Sensor CT6865-05 or AC/DC Current Probe CT6846-05 units with the Sensor Unit CT9557 to measure currents of up to 4000 A in multi-cable circuits. Requires 1 connection cable to connect the PW6001/PW3390 to the CT9557.



ME15W (12 pin) terminal to ME15W (12 pin) terminal, 1 m (3.28 ft) length (for connecting CT9557 total output to PW6001 or PW3390 only)


• Power supply for current sensors when used alone • 4ch, with Waveform/Total Waveform/Total RMS output

Up to 5 A (High speed)

* To connect Probe 2



• DC to 50 MHz (-3dB) • 5 Arms maximum • 1 V/A output • φ 5 mm (0.20 in) core dia.


• DC to 120 MHz (-3dB) • 5 Arms maximum • 1 V/A output • φ 5 mm (0.20 in) core dia.

Voltage Input

*The L1000 is bundled with PQ3198 *Please inquire about voltage cord extension



1000 V specifications, Black/ Red, 3 m (9.84 ft) length, Alligator clip ×2


1000 V specifications, Red/ Yellow/ Blue/ Gray each 1, Black 4, Alligator clip ×8, 3m (9.84ft) length


Banana branch-banana, Red: 1, Cable length: 0.5 m, For branching from the L9438s or L1000s, CAT IV 600 V, CAT III 1000 V


Banana branch-banana, Black: 1, Cable length: 0.5 m, For branching from the L9438s or L1000s, CAT IV 600 V, CAT III 1000 V


Attaches to the tip of the banana plug cable, Red/ Black: 1 each, 196 mm (7.72 in) length, CAT III 1000 V

Other options

The following made-to-order items are also available. Please contact your Hioki distributor or subsidiary for more information

• Carrying case (hard trunk, with casters)
• D/A output cable, D-sub 25-pin-BNC (male), 20 ch conversion
• Bluetooth® serial converter adapter cable 1 m (3.28 ft)
• Rackmount fittings (EIA, JIS)
• Optical connection cable, Max. 500 m (1640.55 ft) length
• PW9100 5 A rating version
• 2000A pull-through type sensor

Impedance Measurement of Reactors While in Operation

Loss Analysis of Reactors While in Operation

Winding the Secondary Coil (Detection Winding) when Measuring Iron Loss with the 2-Coil Method

Drivers, Firmware, Software

Ver. 1.00
Translate »